

METRIBUZIN-INDUCED OXIDATIVE STRESS, ENDOCRINE DISRUPTION, AND CANCER: ADVANCES IN COMPUTATIONAL TOXICOLOGY

Boulaares Islam^{1,2} Derouiche Samir^{1*,2}

¹*Department of Cellular and Molecular Biology, Faculty of Natural Sciences and Life, University of El-Oued, El-Oued 39000, Algeria*

²*Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of Natural Sciences and Life, University of El-Oued, El-Oued 39000, Algeria*

*Corresponding

Abstract

Metribuzin is classified as a systemic herbicide, belonging to the triazinone chemical group. Its effectiveness stems from its ability to disrupt photosynthesis of plants. It is widely used in agriculture to manage the growth and spread of broad-leaved weeds and grasses. Pesticides are known to induce oxidative stress by generating free radicals and altering the body's antioxidant or oxygen-free radical scavenging enzyme systems. Different types of pesticides share a common ability to cause oxidative stress in various cell types and animal models. The toxic effects of Metribuzin have shown increased oxidative stress and alterations in antioxidant levels in both laboratory settings and living organisms. In the other hand, Pesticides are known to function as endocrine disrupting chemicals interfering with the regular operation of natural hormones. The origin of endocrine disorders can be traced to the hormone-mimicking effects of pesticides at low doses, which lead to changes in the production and breakdown of the body's innate hormones. Exposure to pesticides may increase cancer risk including prostate, lung, ovarian, rectal, testicular, skin, and breast cancers. The toxicity of Metribuzin varies, but it can cause acute poisoning, which is characterized by disruptions in the balance between oxidants and antioxidants, hormonal imbalances, and potential carcinogenic effects. Computational approaches such as molecular modeling, QSAR, and bioinformatics provide cost-effective insights into metribuzin's mechanisms of toxicity, health risks, and risk assessment.

Keywords: Metribuzin, Oxidative Stress, Endocrine System Alteration, Cancer, Computational Approaches.

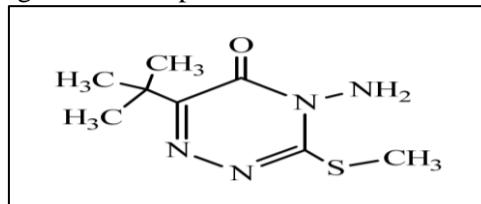
Received: April 27, 2025. **Revised:** June 28, 2025. **Accepted:** September 21, 2025. **Published:** October 23, 2025.

Introduction

Agents designed to eliminate pest organisms are known as pesticides. The word's etymology stems from the Latin suffix "cida," meaning "killer" [1]. In agriculture, these chemical substances are employed to destroy or fight against pests, including those that transmit diseases to humans or animals [2]. Agricultural productivity benefits from pesticides, as they help increase crop yields, make food more accessible and affordable, and reduce the prevalence of pests, weeds, and plant diseases [3]. Fungicides, insecticides, and herbicides are the most frequently utilized pesticides, primarily used to manage weeds and pests in agricultural areas [4]. In the present day, pesticides are widely acknowledged as major contributors to environmental contamination [5].

Over the last ten years, there has been a rise in the agricultural use of pesticides [6]. Asian countries account for more than half of the world's pesticide application, followed by the Americas and Europe [7]. Globally, over a thousand different pesticide compounds are employed [8]. The Food and Agriculture Organization (FAO) reports that approximately four million tons of pesticides are utilized worldwide each year [4]. According to the Algerian Association for the Protection of the Environment, Algeria is among the nations with the highest pesticide consumption. Yearly, about 30,000 tons of pesticides are applied in Algeria [9].

The classification of pesticides typically involves several factors, including their chemical nature [10], target pests [11], and mode of action [4]. From a chemical standpoint, pesticides are grouped into various categories, such as organochlorine, organic phosphorous, carbamate, pyrethrin, and


pyrethroid compounds [10]. Another classification method is based on the pests they target; for example, fungicides are designed to combat fungi, insecticides are used against insects, herbicides target weeds, and rodenticides are employed to control rodents [11]. Furthermore, pesticides are categorized according to their mode of action, which encompasses acetylcholine esterases, chloride channel antagonists and GABA gated channels, sodium channel modulators, juvenile hormone mimics, and mitochondrial complex I electron transport inhibitors [4].

While pesticides are effective in controlling or eradicating target organisms, they are commonly thought to cause substantial unintended damage to humans and non-target species [12]. The presence of pesticide residues in food has sparked concerns about their potential negative effects on human health [13]. Exposure to chemical pesticides has been linked to various harmful health outcomes, including toxic reactions, cancer, skin problems, digestive issues, neurological disorders, respiratory complications, reproductive difficulties, and endocrine disruptions [14]. Consequently, compounds designed to enhance and safeguard food production may unintentionally endanger human well-being [13]. The World Health Organization (WHO) categorizes pesticides into four groups based on their toxicity: extremely hazardous, highly hazardous, moderately hazardous, and slightly hazardous [15].

Metribuzin

Definition of Metribuzin

Metribuzin, a compound with the chemical name 4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one, is classified as a systemic herbicide [16], belonging to the triazinone chemical group [17]. Its effectiveness stems from its ability to disrupt photosynthesis by impeding the electron transport chain during this process [18]. This herbicide is utilized both before and after plant emergence to suppress annual grasses and broadleaf weeds [17]. It is widely used in agriculture to manage the growth and spread of broad-leaved weeds and grasses, particularly in crops such as potatoes, carrots, soybeans, and various grains [18]. In 1973, metribuzin was officially sanctioned for use as a herbicide in the United States [19]. Due to its toxicity even at low concentrations, the European Commission has designated it as a potential substitute under directive 540/2011 [18].

Figure 04: Chemical structure of metribuzin [20]

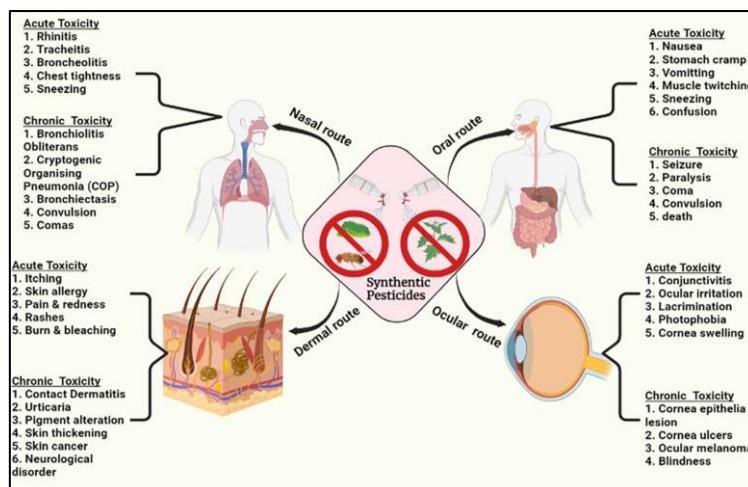
Physical and Chemical Characteristics of Metribuzin

The extensive physical and chemical characteristics associated with the herbicide identified as metribuzin have been meticulously articulated and are systematically displayed within the framework of **Table 01**.

Table 01: Physical and chemical characteristics of metribuzin

Characteristics	Metribuzin	Reference
Chemical name	4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one	[21]
Type of pesticide	Herbicide	[22]
Chemical family	Triazinone	[23]
Chemical group	Triazine	[24]
Chemical formula	C ₈ H ₁₄ N ₄ OS	[25]
Molecular weight	214.3	[26]
Mode of action	PSII inhibition	[27]
Appearance	White crystalline solid	[28]
Odour	Slight sulphur odour	[29]
Half-life	Between 5-50 days	[30]
Melting point	125-126 °C	[31]
Solubility in water	1.05 g/L	[32]

Absorbance wavelength λ (nm)	294 ± 1.0 nm	[33]
Vapor pressure	4×10^7 mmHg	[34]


Metribuzin Exposure Routes in Humans

Humans can be exposed to pesticides through both direct and indirect means. Direct exposure occurs via agricultural activities, household use, and professional applications, while indirect exposure happens through the food chain [35]. Significant dietary exposure begins early in life through breast milk, as evidenced by high levels of organochlorine pesticides found in human breast milk samples [36]. The main routes of human pesticide exposure include food consumption, air, water, soil, and contact with plants and animals [37]. People who are exposed to pesticides, either directly or indirectly, may suffer from acute toxic effects and long-term health problems [38]. According to Simões et al., more extensive research is needed to examine the health impacts of (non-occupational) pesticide exposure on humans, especially vulnerable groups such as expectant mothers and their babies [39].

There are four primary pathways through which pesticides can infiltrate the human body: dermal, oral, ocular, and respiratory routes [37]. Dermal exposure constitutes a considerable risk for individuals engaged in the application of pesticides [40]. Oral exposure may also occur when individuals fail to observe proper hand hygiene prior to the ingestion of food or the engagement in smoking activities [41]. Respiratory exposure, which takes place through inhalation or respiration, results from the volatile components of pesticides and presents significant health hazards to workers, particularly impacting the nasal, pharyngeal, and pulmonary tissues when substantial amounts of pesticides are inhaled from environmental matrices such as air, water, and soil [38]. The exposure of unprotected ocular tissues to pesticides may arise from accidental splashes of these agents, leading to their penetration into ocular structures and potentially resulting in severe ocular toxicity [42]. **Table 02** illustrates the pathways through which humans encounter pesticide exposure [35].

Table 02: Human routes of pesticide exposure [35]

Routes	Mechanism of exposure
Dermal exposure	Pesticide absorption can occur through accidental contact, such as splashing, spillage, or spray mist, especially during the handling phases of mixing, loading, disposal, and equipment cleaning.
Oral exposure	Pesticides may inadvertently be transferred when pouring from a labeled container into an unmarked one, particularly if soft drink or drinking water bottles have been previously contaminated with these chemicals.
Respiratory exposure	Spraying pesticides typically produces finer droplets, especially when traditional application methods are employed.
Eye exposure	Certain agrochemicals have been substantiated to be taken up via the ocular area, resulting in significant and potentially lethal health repercussions.

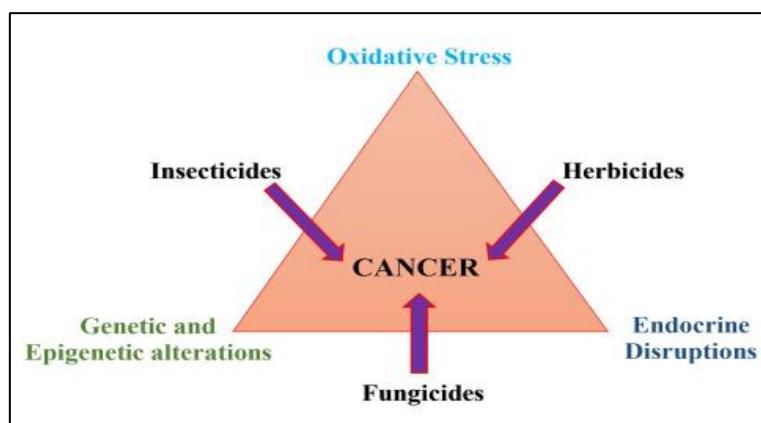
Figure 03: Human pesticide exposure pathways [43]

Effects of Metribuzin on Human Health

Metribuzin-Induced Oxidative Stress

An imbalance between antioxidants and pro-oxidants, favoring the latter, defines oxidative stress [44], which leads to various metabolic and physiological changes, as well as numerous diseases [45]. A wide range of health issues, including cancer, diabetes, heart diseases, neurodegenerative disorders, inflammatory conditions, and aging, are closely associated with oxidative stress [46]. Pesticides are known to induce oxidative stress by generating free radicals and altering the body's antioxidant or oxygen-free radical scavenging enzyme systems [47]. Studies have demonstrated that different types of pesticides share a common ability to cause oxidative stress in various cell types and animal models [48]. Some pesticides can directly produce reactive oxygen species (ROS), such as superoxide anion (O_2^-), hydrogen peroxide (H_2O_2), and hydroxyl radicals (OH^-) [13]. When ROS levels become excessive, they can damage lipids, proteins, and DNA, resulting in mitochondrial stress, followed by apoptosis and cell death [49]. Living cells contain scavenging mechanisms that include superoxide dismutase (SOD), catalase (CAT), peroxidases, other antioxidant enzymes, and low-molecular weight antioxidants [50]. Studies have shown that exposure to pesticides, either singly or in combination, can inhibit antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) [51]. The fatty acid composition of organisms may be affected by pesticide exposure through increased lipid peroxidation [52]. Oxidative cellular damage is indicated by lipid peroxidation (LPO), a major factor in cell function loss, as well as DNA damage, enzyme inactivation, and hormone oxidation [53]. Intracellular oxidative stress has been found to be induced by metribuzin [9]. Studies on the toxic effects of metribuzin have shown increased oxidative stress and alterations in antioxidant levels in both laboratory settings and living organisms [54]. The oxidative stress effects of metribuzin across various species were illustrated in **Table 03**.

Table 03: Oxidative stress effects of metribuzin across various species


Species	Dose	Experimental period	Organs	Parameters	Reference
Rabbits	3.22 and 6.44 mg/kg	60 days	Kidneys	MDA, GSH and GST	[6]
Rabbits	3.22 and 6.44 mg/kg	60 days	Liver	MDA, GSH and GST	[9]
Rats	133.33 mg/kg	21 days	Liver, kidney, brain and testis	MDA, GSH and GPx	[5]
Rats	1.3 and 13 mg/kg	90 days	Liver, adipose tissue, muscle and intestine	MDA, carbonyl proteins and GSH	[55]

Metribuzin-Induced Endocrine System Alteration

Pesticides are known to function as endocrine disrupting chemicals (EDCs), interfering with the regular operation of natural hormones [56]. The origin of endocrine disorders can be traced to the hormone-mimicking effects of pesticides at low doses, which lead to changes in the production and breakdown of the body's innate hormones [57]. These substances primarily impact hormonal signaling pathways and the neuroendocrine system, while also generating oxidative stress that contributes to various metabolic conditions [58]. Besides causing toxic effects in the pancreas, pesticides alter hormone release, triggering metabolic disorders [59]. By acting as antagonists to sex hormone functions, pesticides can cause abnormal sexual development and interfere with other vital physiological processes [60]. Many studies have identified triazine herbicides as potential endocrine disruptors [61]. Moreover, findings from animal research suggest that metribuzin may cause harmful health effects, including endocrine disturbances [9]. Jyoti et al. also reported that long-term exposure to metribuzin is associated with a higher occurrence of endocrine abnormalities [62].

Metribuzin-Induced Cancer

Cancer constitutes a significant public health dilemma globally [63] and serves as the foremost source of mortality [64]. Research has shown that some pesticides may increase cancer risk [13]. Epidemiological studies, primarily focused on agricultural workers, have revealed links between pesticide exposure and higher incidence of various cancers, including prostate, lung, ovarian, rectal, testicular, skin, and breast cancers, as well as Non-Hodgkin Lymphoma (NHL), multiple myelomas, and leukemia [65]. According to Cavalier et al., recent evidence suggests causal relationships between pesticide exposure and cancer, with the strongest support for connections to acute myeloid leukemia (AML) and colorectal cancer (CRC), as these associations were consistently observed across multiple studies [66]. In 1998, the Environmental Protection Agency (EPA) classified metribuzin as group D, meaning there was insufficient evidence to determine its human carcinogenicity [67]. However, research by Delancey et al. suggested a potential association between metribuzin use and certain lymphohematopoietic cancers in males [68].

Figure 02: Key molecular mechanisms involved in the cancer-causing effects of pesticides [69]

Computational Approaches in Assessing Metribuzin Toxicity and Health Risks

Recent advances in computational toxicology have provided valuable tools for understanding and predicting the health risks associated with pesticide exposure, including metribuzin. In silico methods such as molecular docking, quantitative structure-activity relationship (QSAR) modeling, and molecular dynamics simulations enable researchers to explore the interaction of metribuzin with key biomolecules involved in oxidative stress pathways, endocrine regulation, and carcinogenesis. Bioinformatics and systems biology approaches further allow the integration of large-scale omics data to identify potential biomarkers and disrupted signaling networks. Additionally, predictive software platforms support the evaluation of metribuzin's environmental fate, bioaccumulation, and long-term human health risks. By complementing experimental studies, these computer applications offer cost-effective, rapid, and mechanistic insights that enhance risk assessment and guide the development of safer agricultural practices. Computational approaches such as molecular modeling, QSAR, and

bioinformatics provide cost-effective insights into metribuzin's mechanisms of toxicity, health risks, and risk assessment.

Conclusion

Metribuzin, a pesticide commonly employed to manage broadleaf and grassy weeds in vegetable crops, has been found to pose significant health risks to humans and animals. People can be exposed to this pesticide through various routes, including direct contact during agricultural work, household usage, and professional applications, as well as indirectly through the food supply chain. The toxicity of metribuzin varies, but it can cause acute poisoning, which is characterized by disruptions in the balance between oxidants and antioxidants, hormonal imbalances, and potential carcinogenic effects.

References

1. Oguh C.E., et al. Toxicity Impact of Chemical Pesticide (Synthetic) on Ecosystem- A Critical Review. *East African Scholars Journal of Agriculture and Life Sciences.* 3(2020):23-36. doi:10.36349/EASJALS.2020.v03i02.003
2. Derouiche S., et al. The effect of herbicide metribuzin on environment and human: A systematic review. *J Pharm Biosci.* 8(2020):10-5.
3. AbuQamar S.F., et al. Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. *Marine Pollution Bulletin.* 206(2024):116613.
4. Sood P. Pesticides Usage and Its Toxic Effects—A Review. *Indian Journal of Entomology.* 86 (2024):339-47.
5. Kadeche L., et al. Ameliorative effects of vanillin against metribuzin-induced oxidative stress and toxicity in rats. *Int J Pharm Pharm Sci.* 9(2017):56-62.
6. Derouiche S., et al. Risk of Metribuzin (Triazinone herbicide) on hematological and renal structure and function of pregnancy rabbits. *Asian J Biol Sci.* 12(2019):192-8.
7. Ponnuchamy M., et al. Sustainable adsorbents for the removal of pesticides from water: a review. *Environmental Chemistry Letters.*;19(2021): 2425-63.
8. Fusar-Poli E. and Fontefrancesco M.F. Pesticide: A Contemporary Cultural Object. *Encyclopedia.* 4(2024): 720-34.
9. Derouiche S., et al. Triazinone herbicide metribuzin induced acute liver injury: A study of animal model. *J Acute Dis.* 7(2018): 152-7.
10. Hassaan MA. and El Nemr A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. *Egyptian Journal of Aquatic Research.* 46(2020):207-20.
11. Tudi M., et al. Agriculture development, pesticide application and its impact on the environment. *International journal of environmental research and public health.* 18(2021):1112.
12. Donley N., et al. Forever pesticides: a growing source of PFAS contamination in the environment. *Environmental Health Perspectives.*;132(2024):075003.
13. Sajad M., et al. Role of nutraceutical against exposure to pesticide residues: power of bioactive compounds. *Front nutr.* 11(2024):1342881.
14. Boulaares I, Derouiche S. A review on the therapeutic effect of phytosynthesized manganese oxide nanoparticles for the management of microbial infections. *J. Microbiol. Infect. Dis.* 2024; 14(4): 146–157
15. Yadav IC and Devi NL. Pesticides classification and its impact on human and environment. *Environmental science and engineering.* 6(2017):140-58.
16. Mirzavand S., et al. Identification and Characterization of Bacterial Strains Capable of Degrading Atrazine and Metribuzin Herbicides in Sugarcane Fields. *Sugar Tech.* 26(2024): 95-105.
17. Lahlah RZ, et al. Removal of Metribuzin and Bentazon by LDH-HA Modified Material: Kinetic and Equilibrium Study. *Soil and Sediment Contamination: An International Journal.* (2024):1-28.
18. Ay KO, et al. Application of high sensitive silver nanocubes SERS substrate for detection of metribuzin. *Journal of Molecular Structure.*;1297 (2024):136869.
19. Rubio-Armendáriz C, et al. Metribuzin. *Encyclopedia of Toxicology: Elsevier* (2024): 359-65.
20. Fouad M., et al. Effect of particles size on adsorption isotherm of chlorantraniliprole, dinotefuran, bispiribac-sodium, and metribuzin into sandy loam soil. *Current Chemistry Letters.* 13(2024):61-72.

- 21.Kumar V, et al. Volunteer rapeseed infestation and management in corn. *Agronomy Journal*.115(2023): 2925-37.
- 22.Saygili VI, et al. Effect of Some Herbicide (Metribuzin, Pendimethalin and Fluazifop-p-Butyl) on *Bacillus cereus* and *Pseudomonas putida*. *Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG)*. 40(2024): 155-62.
- 23.Gitsopoulos T, et al. Selectivity of the Premixtures Flufenacet, Diflufenican and Flufenacet, Diflufenican, Metribuzin on Bread Wheat (*Triticum aestivum* L.) and Barley (*Hordeum vulgare* L.) and Efficacy on ALS/ACCase-Resistant Populations of *Lolium rigidum* Gaudin. *Agronomy*. 2024;14(5):949.
- 24.Abou-Khater L, et al. Identification of tolerance to metribuzin and imazethapyr herbicides in faba bean. *Crop Science*. 61(2021):2593-611.
- 25.Kadam SR and Pejaver MK. Biodegradation and Kinetic Study of Hazardous Metribuzin Herbicide Using a Novel Soil Bacterial Isolate *Olivibacter oleidegradans* Strain SP01 in Aqueous Solution. *Nature Environment and Pollution Technology*. 22(2023): 1009-15.
- 26.Volova TG, et al. Constructing herbicide metribuzin sustained-release formulations based on the natural polymer poly-3-hydroxybutyrate as a degradable matrix. *Journal of Environmental Science and Health, Part B*. 51(2016):113-25.
- 27.Li S and McIntyre H. Toxicity Assessment of 36 Herbicides to Green Algae: Effects of Mode of Action and Chemical Family. *Agrochemicals*.3(2024):164-80.
- 28.Kumar S, et al. Herbicidal characterization of metribuzin and its complexes with Fe (II), Co (II) AND Ni (II). *The International journal of analytical and experimental modal analysis*. 12(2020): 539-46.
- 29.Yahiaoui O, et al. Evaluating removal of metribuzin pesticide from contaminated groundwater using an electrochemical reactor combined with ultraviolet oxidation. *Desalination*. 270(2011): 84-9.
- 30.Boulaares I, Derouiche S, Chetehouna S, Niemann J. GreenSynthesis of Manganese Oxide Nanoparticles 1 Using Basil Extract for Biocompatibility and Therapeutic Targeting of Metribuzin Poisoned Heart and Lung Tissues in Wistar Rats. *Archives of Razi Institute*. 2025
- 31.Boyandin AN and Kazantseva EA. Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly- ϵ -caprolactone. *Journal of Environmental Science and Health, Part B*. 56(2021): 467-76.
- 32.Abdel Rahman TA, et al. Impact of Formulation Type on Stability of Metribuzin Herbicide Under Certain Environmental Conditions. *Egyptian Journal of Chemistry*. 66(2023): 2045-57.
- 33.Honório MO, et al. Removal of metribuzin by ozonation: effect of initial concentration and pH. *Journal of Environmental Protection*. 4(2013):564-9.
- 34.Pohanish RP. M. In: Pohanish RP, editor. *Sittig's Handbook of Pesticides and Agricultural Chemicals* (Second Edition). Oxford: William Andrew Publishing (2015): 518-97.
- 35.Upadhayay J, et al. Impact of pesticide exposure and associated health effects. *Pesticides in crop production: physiological and biochemical action*. (2020): 69-88.
- 36.Clementi M, et al. Pesticides and fertility: an epidemiological study in Northeast Italy and review of the literature. *Reproductive toxicology*.26(2008): 13-8.
- 37.Kim K-H, et al. Exposure to pesticides and the associated human health effects. *Science of The Total Environment*. 575(2017): 525-35.
- 38.Tudi M, et al. Exposure routes and health risks associated with pesticide application. *Toxics*.10(2022): 335.
- 39.Simões M, et al. Exploring associations between residential exposure to pesticides and birth outcomes using the Dutch birth registry. *Environment International*.178(2023): 108085.
- 40.MacFarlane E, et al. Dermal Exposure Associated with Occupational End Use of Pesticides and the Role of Protective Measures. *Safety and Health at Work*. 4(2013):136-41.
- 41.Damalas CA and Koutroubas SD. Farmers' exposure to pesticides: toxicity types and ways of prevention. *MDPI* (2016):1.
- 42.García-García CR, et al. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. *Life sciences*.145(2016): 274-83.

43. Okagu IU, et al. Overhauling the ecotoxicological impact of synthetic pesticides using plants' natural products: a focus on *Zanthoxylum* metabolites. *Environ Sci Pollut Res.* 30(2023): 67997-8021.

44. Guemari IY, et al. Study of the Role of Oxidative Stress in Pathophysiology of Cardiovascular Diseases. *Collective Journal of Cardiovascular Medicine.* 1 (2024): ART0014.

45. Chetehouna S, et al. Gas Chromatography Analysis, Mineral Contents and Anti-inflammatory Activity of *Sonchus maritimus*. *Trop J Nat Prod Res.* 8(2024): 6787-6798

46. Chetehouna S, et al. Phytochemical profile, anti-inflammatory analysis and cytotoxic activity of SmE-SeNPs against breast (MCF-7) cancer cells. *Biocatalysis and Agricultural Biotechnology.*; 57(2024): 103122.

47. Medithi S, et al. Predominant role of antioxidants in ameliorating the oxidative stress induced by pesticides. *Archives of environmental & occupational health.* 76(2021): 61-74.

48. Sule RO, et al. A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide-induced toxicity. *Oxid Med Cell Longev.* 1(2022):5563759.

49. Gómez X, et al. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. *npj Microgravity.* 7(2021):35.

50. Zhang S, et al. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. *Bioresource Technology.* 307(2020):123234.

51. Ojha A, et al. Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. *Pestic Biochem Physiol.* 99 (2011):148-56.

52. Gonçalves AMM, et al. Fatty acids as suitable biomarkers to assess pesticide impacts in freshwater biological scales – A review. *Ecological Indicators.* 122(2021):107299.

53. Ali M, et al. Lipid peroxidation as a biomarker for exposure of pesticides. *International Journal of Advanced Research.* 2(2014): 717-20.

54. Kadeche L, et al. Quercetin attenuates metribuzin-induced biochemical and hematological toxicity in adult rats. *Int J Pharm Sci Rev Res.* 40(2016):38-46.

55. Chiali F, et al. Chronic low level metribuzin exposure induces metabolic alterations in rats. *Pestic Biochem Physiol.* 106(2013): 38-44.

56. Moreira S, et al. Pesticides and male fertility: A dangerous crosstalk. *Metabolites.* 11(2021):799.

57. Gerunova L, et al. Pesticides as endocrine disruptors and neurotoxicants. *IOP Conference Series: Earth and Environmental Science;* (2019): 1

58. Chetehouna S, Derouiche S, Boulaares I. Therapeutic potential of bioconjugated niosomes: *sonchus maritimus* extract protects against high-fructose diet-induced nephrotoxicity. *WSEAS Transactions on environment and development.* 2025; 21(1):1-12

59. He B, et al. Pesticides-induced energy metabolic disorders. *Science of The Total Environment.* 729(2020):139033.

60. Lushchak VI, et al. Pesticide toxicity: a mechanistic approach. *EXCLI journal.* 17(2018):1101.

61. Hostovsky M, et al. Effects of the exposure of fish to triazine herbicides. *Neuroendocrinology Letters.* 35(2014):3-25.

62. Jyoti G, et al. Spectrophotometric Method for determining Metribuzin Herbicide with Aniline in various Environmental and Agricultural Samples. *Research Journal of Chemistry and Environment.* 25(2021):67-72.

63. Boulaares I, et al. Protective effect of ObE against Doxorubicin-Induced immunosuppression and Cardiotoxicity in Rats. *Res J Pharm Technol.* 17(2024):1839-43.

64. Boulaares I, et al. Analysis of Some Hematological and Biochemical Markers in Women Cancer Patients Receiving Doxorubicine Chemotherapy. *J Pharm Biosci.* 8(2020):29-34.

65. de Graaf L, et al. Occupational pesticide exposure, cancer and chronic neurological disorders: A systematic review of epidemiological studies in greenspace workers. *Environmental Research.*;203(2022):111822.

66. Cavalier H, et al. Exposures to pesticides and risk of cancer: evaluation of recent epidemiological evidence in humans and paths forward. *Int J Cancer.* 152(2023):879-912.

67. Armendáriz CR, et al. *Encyclopedia of Toxicology (Third Edition).* Oxford: Academic Press; (2014): 327-9.

- 68.Delancey JOL, et al. Occupational exposure to metribuzin and the incidence of cancer in the Agricultural Health Study. *Annals of epidemiology*.19(2009):388-95.
- 69.Pathak VM, et al. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. *Front Microbiol*.13(2022):962619.