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ABSTRACT 

An AI-based approach has the potential to improve treatment outcomes, increase patient satisfaction, and advance the 

field of pharmaceutical science. This study aims to address the existing limitations in NDDS classification, such as the 

variability in nanoparticle formulations and the complex nature of their interactions with biological systems by 

leveraging MobileNet's capabilities. The pre-processing pipeline implemented for this study comprises Gaussian 

blurring, Contrast Limited Adaptive Histogram Equalization (CLAHE), Otsu's thresholding, and image resizing, 

alongside conversion to a format suitable for input into the MobileNet architecture. The evaluation of the model on the 

set aside for testing produced an accuracy of 84.37% and a loss of 0.5543. In conclusion, we have succeeded in 

combining nanotechnology and pharmaceutical sciences with artificial intelligence to prepare a trained model to 

recognize the liposomes as Novel Drug Delivery System (NDDS) and to evaluate the nature and concentration of active 

ingredients carried inside them by utilizing a MobileNet model. 
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1. Introduction 

Nanotechnology has been identified as one of the most vigorously pursued areas of research [1]. It has garnered 

increasing attention in scientific and technological circles due to its diverse applications across biomedicine, optics, and 

electronics [2]. Nanotechnology integrates insights from various disciplines, including chemistry, physics, materials 

science, engineering, biology, and health sciences [3]. Over the past few years, the use of nanotechnology in medicine 

has increased rapidly in order to both prevent and treat diseases within the human body [4]. Nanotechnology provides 

numerous advantages in the treatment of persistent human diseases by delivering medications precisely and targeting 

specific sites [5]. The evolution of drug formulations based on nanoparticles has gave in the chances to address and treat 

difficult diseases [6]. A Novel Drug Delivery System (NDDS) is an inventive strategy that uses new technologies, 

innovative ideas, and methodologies to deliver the active compounds in safe yet effective concentration to make desired 

pharmacological effect [7]. The active pharmaceutical ingredient can be released to produce the necessary therapeutic 

response thanks to the drug delivery system [8]. Drug delivery systems based on liposome have played a significant role 

in the formulation of powerful drugs to enhance therapeutics [9]. Liposomes have been considered promising and 

versatile drug vesicles. Liposomes exhibit better belongings compared with traditional drug delivery systems, including 

site-targeting, sustained or controlled release, protection of drugs against degradation and clearance, more effective 

therapeutic effects, and lower toxic side effects [10]. Liposomes are spherical vesicles formed up of one or more 

phospholipid bilayers, which are under extensive studies as drug carriers to enhance the delivery of several substances 

and bioactive agents in medical, pharmacological, nutritional, and biological research [11]. Significant developments in 

machine learning and artificial intelligence (AI) technology offer a transformative opportunity in the drug discovery, 

formulation, and testing of pharmaceutical dosage forms [12]. This artificial intelligence (AI)-based approach has the 

potent to enhance therapy results, improve patient satisfaction, and advance the field of pharmaceutical sciences [13]. 

Yet, applying advanced AI models like MobileNet for classifying NDDS types still needs to be explored. 

 

This research aims to bridge the gap in the field by employing a MobileNet model renowned for its efficiency and 

accuracy in image-based classification tasks to the specific challenge of classifying NDDS types. By leveraging 

MobileNet's capabilities, this study seeks to address the existing limitations in NDDS classification, such as the 

variability in nanoparticle formulations and the complex nature of their interactions with biological systems. Our 

approach promises to enhance the accuracy of NDDS classification and contribute to a novel application of MobileNet 

models within the pharmaceutical sciences. 

 

2. Material and Methods 

2.1. Preparation of Aqueous Extract 
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Ocimum basilicum L. was collected in August 2022 from the El-Oued (Guemar) region, Algeria. The basil leaves were 

cleaned and dried away from direct sunlight at room temperature. The dry leaves were ground into a fine powder. Plant 

powder is kept at room temperature in airtight containers until the experiment begins. Pr. Youssef Hallis identified of 

this plant. The aqueous extract was prepared by boiling 10 g of dried Ocimum basilicum L. leaves powder in 100 ml of 

distilled water for two hours at 50 degrees Celsius. The mixture was allowed to cool and macerate at room temperature 

for 24 hours, then filtered through Whatman filter paper. Afterward, the extract was evaporated using a rotary 

evaporator and dried in an oven [14] [15]. 

 

2.2. Biosynthesis of MnO NPs 

Biosynthesis of MnO nanoparticles (NPs) was carried out according to the method of Boulaares et al. Aqueous basil 

extract was mixed with a manganese (II) chloride solution. Sodium hydroxide solution was added dropwise under 

constant and gradual stirring until the pH reached 8, forming tiny particles. The mixture was then stirred using a 

magnetic stirrer at 65°C for 6 hours, during which the solution's color changed from golden yellow to dark brown, 

indicating the successful biosynthesis of MnO NPs. The mixture was next centrifuged at 5000 rpm for 20 minutes, and 

the supernatant was discarded. The precipitate was washed three times with distilled water and ethanol before being 

dried to obtain the final product [16].  

 

2.3. Preparation of Liposomes 

The method used for liposomes preparation is the thin film hydration method (Bangham method). This technique entails 

dissolving lipids in an organic solvent (ethanol). After that, the solvent is removed by evaporation under vacuum at a 

45-60 °C temperature to form a thin lipid film. Then, the lipid film is hydrated in aqueous media through continuous 

agitation at a temperature of 60-70 °C for up to 2 hours, forming round and closed liposomes [17]. A phosphate buffer 

solution (50 mM, pH 6.5) was used to dissolve orcinol and glutamine at a concentration of 200 mg/mL. The process 

involved combining 50 mL of the orcinol and glutamine mixtures with 950 mL of liposomes. This reaction was allowed 

to proceed overnight at room temperature, ultimately leading to the creation of a bioconjugation [18]. 

 

2.4. Data Set Collection 

The dataset comprises 960 photos of various liposome samples under different conditions (magnifications of 10x, 40x, 

100x, various illuminations, and angles) on microscope slides. Photos were taken with an SM-E22SF/DS camera phone 

and saved in JPG format at 2250 × 4000 pixels. The dataset is divided into eight groups based on the composition of the 

liposomes (Fig.1): 

 

Group 1 (0): Physiological water without liposomes. 

Group 2 (C): Empty liposomes without BE and MnO NPs. 

Group 3 (M5): 05 mg MnO NPs-loaded liposomes. 

Group 4 (M10): 10 mg MnO NPs-loaded liposomes. 

Group 5 (P50): 50 mg BE-loaded liposomes. 

Group 6 (P100): 100 mg BE-loaded liposomes. 

Group 7 (PM 50-5): 50 mg BE- and 05 mg MnO NPs-loaded liposomes. 

Group 8 (PM 100-10): 100 mg BE- and 10 mg MnO NPs-loaded liposomes. 

    
(0): Mag 10 x 10 (C): Mag 10 x 10 (M5): Mag 10 x 10 (M10): Mag 10 x 10 

    
(0): Mag 40 x 10 (C): Mag 40 x 10 (M5): Mag 40 x 10 (M10): Mag 40 x 10 
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(0): Mag 100 x 10 (C): Mag 100 x 10 (M5): Mag 100 x 10 (M10): Mag 100 x 10 

    
(P50): Mag 10 x 10 (P100): Mag 10 x 10 (PM 50-5): Mag 10 x 10 (PM 100-10): Mag 10 x 10 

    
(P50): Mag 40 x 10 (P100): Mag 40 x 10 (PM 50-5): Mag 40 x 10 (PM 100-10): Mag 40 x 10 

    

(P50): Mag 100 x 10 (P100): Mag 100 x 10 (PM 50-5): Mag 100 x 10 
(PM 100-10): Mag 100 x 

10 

Fig.1. Liposomes as a novel drug delivery system (NDDS) photo in the eight groups. 

 

2.5. Image Pre-Processing 

In pursuing accurate classification of NDDS through deep learning models, pre-processing input images constitutes a 

critical step. This process entails a series of operations to enhance the images' quality and consistency, facilitating more 

effective model training and prediction. The pre-processing pipeline implemented for this study comprises Gaussian 

blurring, Contrast Limited Adaptive Histogram Equalization (CLAHE), Otsu's thresholding, and image resizing, 

alongside conversion to a format suitable for input into the MobileNet architecture. 

 

The initial step involves the application of Gaussian blur to the input images. This technique utilizes a Gaussian kernel 

to smooth the image, effectively reducing noise and minor details that are not critical for the classification task. By 

applying this filter with a kernel size of (5, 5), we ensure that the essential structures within the NDDS images are 

retained while extraneous information is minimized. This operation is crucial for enhancing the robustness of the 

subsequent image analysis steps, particularly in environments with variable lighting conditions or where the samples 

may exhibit slight physical variations. 

 

Following noise reduction, the next operation aims to enhance the contrast of the images. CLAHE is employed for this 

purpose, targeting the grayscale version of the blurred image. Unlike standard histogram equalization, CLAHE limits 
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contrast amplification to prevent the over-enhancement of noise in relatively homogeneous image regions. This is 

achieved by dividing the image into contextual regions and applying histogram equalization to each separately, with a 

clip limit 2.0 and a tile grid size of (8, 8). The result is a balanced enhancement of the visual clarity and definition of the 

NDDS, facilitating more accurate edge detection and feature extraction in later stages. 

 

After contrast enhancement, Otsu's method converts the image into a binary format, distinguishing the foreground 

(NDDS particles) from the background. This thresholding technique selects the optimum threshold value by minimizing 

intra-class variance in the image, thus effectively segmenting the relevant features from the surroundings. This binary 

representation simplifies the identification and classification of NDDS by focusing on the shape and distribution of the 

particles. 

 

The final steps in the pre-processing pipeline involve resizing the binary image to a standard dimension of 640x640 

pixels, ensuring consistency across the dataset and aligning with the input size requirements of the MobileNet model. 

To accommodate the model's three-channel input specification, the grayscale image is stacked across three channels, 

simulating the format of an RGB image without introducing additional color information. This standardized input 

format is crucial for the efficient and accurate processing of images by the MobileNet architecture. By meticulously 

executing each of these pre-processing steps, the study ensures that the images of NDDS are optimally prepared for the 

subsequent application of deep learning models. As shown in Fig.2, this preparation enhances the model's ability to 

learn meaningful patterns from the data and contributes to the overall reliability and accuracy of the NDDS 

classification outcomes. 

 
Fig.2. Liposomes as a novel drug delivery system (NDDS) photo in the eight groups after pre-processing 

 

2.6. Training Process and MobileNet Architecture 

The foundational dataset was systematically partitioned into three subsets: training, validation, and test. This tripartite 

division is crucial for assessing the model's learning efficacy, adaptability to novel data, and ultimate performance in a 

controlled, unbiased evaluation. Table 1 summarizes the dataset distribution, ensuring transparency in the model's 

experimental environment. 

 

Table 1. Dataset split summary 

Dataset Description Size 

Training Set 
Used to train the model, allowing it to learn the distinctions between different 

categories. 
768 Image 

Validation Set Provides a form of early feedback on the model's generalization capability. 96 Image 

Test Set Evaluates the model's final performance on unseen data. 96 Image 
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To streamline the training process, the data frames were transformed into TensorFlow datasets, leveraging the 

platform's efficient data handling and processing capabilities. This conversion enables sophisticated batching, shuffling, 

and prefetching operations, significantly enhancing computational efficiency. The parameters employed in this 

conversion are detailed in Table 2. 

 

Table 2. TensorFlow dataset conversion parameters 

Parameter Functionality Specified Value 

buffer_size 
Determining the dataset's shuffling capacity is crucial for mitigating order-

induced bias in the learning process. 
Length of Dataset 

batch_size 
Regulates the quantity of data samples the model processes per iteration, 

balancing computational load and learning granularity. 
32 

prefetch_buffer 
Pre-fetches data batches to expedite data processing, optimizing pipeline 

throughput. 
AUTOTUNE 

The MobileNetV2 architecture, renowned for its computational efficiency and robust feature extraction capabilities, was 

selected for this study's classification task. This model's integration, configured with a custom top layer tailored for 

NDDS classification, underscores the study's innovative approach. The configuration specifics are elucidated in Table 

3. 

 

Table 3. MobileNetV2 configuration details 

Configuration Element Description 

Base Model 
MobileNetV2 was initialized with ImageNet weights and adapted to exclude the top 

layer, which serves as the foundation for feature extraction. 

GlobalAveragePooling2D 
Condenses the feature maps into a singular vector per image, simplifying the model's 

interpretative process. 

Dense Layer 
It comprises 1024 neurons with ReLU activation and is tasked with learning complex 

associations within the data. 

Dropout Layer 
Implements a 50% dropout rate to mitigate overfitting by randomly excluding neurons 

during training. 

Output Layer 
Culminates in a softmax-activated layer, outputting a probabilistic distribution across 

the NDDS categories. 

The training regime was underpinned by the Adam optimizer, selected for its adaptive learning rate capabilities, 

facilitating nuanced model adjustments. The incorporation of early stopping, predicated on validation loss performance, 

exemplifies the methodical approach to preventing overfitting. The training and evaluation metrics, crucial for 

interpreting the model's efficacy, are summarized in Table 4. 

 

Table 4. Training parameters and evaluation metrics 

Training/Evaluation 

Parameter 
Description 

Optimizer 
Adam was chosen for its effectiveness in handling sparse gradients and adaptive learning 

rate adjustments. 

Learning Rate 
Set to 0.0001, ensuring gradual convergence and minimizing the risk of overshooting the 

loss function's minimum. 

Loss Function 
Sparse Categorical Crossentropy, aligning with the multi-class nature of the NDDS 

classification task. 

Evaluation Metrics 
Model performance is assessed using accuracy, providing a direct measure of classification 

success rates. 

This meticulous approach to model training and architecture design underscores the study's commitment to precision 

and reproducibility. By adhering to these methodological standards, the research contributes to the burgeoning field of 

NDDS classification and paves the way for future explorations into AI-driven pharmaceutical innovations. 
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Fig.3. MobileNet model training and architecture for Nano Drug Delivery Systems (NDDS) classification in a graphical 

format.  

 

3. Results 

Our deep learning model, leveraging the MobileNetV2 architecture through transfer learning, underwent a 

comprehensive training process spanning 50 epochs. The initiation of training was characterized by a loss of 2.1227 and 

an accuracy of 29.43%, as anticipated due to the initial untrained state of the model. Throughout the training phase, 

there was a discernible improvement in the model's accuracy, reaching a training accuracy of 81.77% by the final 

epoch. The validation accuracy commenced at 35.42% and experienced fluctuations, indicative of the model's 

adaptation to the validation dataset, eventually peaking at 76.04% in the 50th epoch. Correspondingly, the validation 

loss decreased over time, barring sporadic increases common during the optimization process (Table 5). 

 

Table 5. Model training and validation performance 

Epoch Training Loss Training Accuracy Validation Loss Validation Accuracy 

1 2.1227 29.43% 1.5338 35.42% 

... ... ... ... ... 

50 0.4794 81.77% 0.6688 76.04% 

The final evaluation of the model on the test set, which had been held out from the training process, yielded an accuracy 

of 84.37% and a loss of 0.5543. This performance benchmark reflects the model's capability to generalize well and 

signifies its robustness when faced with unseen data. The learning curves (Fig.4) provide insight into the model's 

learning trajectory. Training accuracy shows a consistent increase as the model learns from the data. In contrast, 

validation accuracy tracks closely behind, suggesting that the model is generalizing effectively rather than memorizing 

the training data. Similarly, both training and validation loss metrics decrease over time, which is congruent with the 

increases in accuracy. 

 

 
Fig.4. Training and validation accuracy and loss curves 
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Visual examination of predictions made by the model offers a qualitative perspective on its performance. Fig.5 presents 

a selection of images from the test set, depicting the model's predicted class labels alongside the actual labels. This 

visual assessment reveals instances of both correct classifications, such as 'C' being accurately predicted as 'C', and 

misclassifications, wherein a sample of 'PM 50-5' was incorrectly predicted as 'PM 100-10'. These examples highlight 

the model's strengths and pinpoint areas where its classification capabilities can be further honed. 

Actual: C 

Predicted: C 

Actual: P 50 

Predicted: P 50 

Actual: M 5 

Predicted: M 5 

Actual: M 10 

Predicted: M 10 

Actual: PM 50-5 

Predicted: PM 100-

10 

     
Fig.5. Sample predictive performance on test samples 

 

The instances of accurate predictions affirm the model's effectiveness in classifying NDDS. On the other hand, the 

misclassifications offer valuable insights into possible confusion between classes and underscore the need for further 

refinement of the model's training to enhance its discriminative power for closely related classes. 

 

In summary, the trained MobileNetV2 model demonstrates promising performance in classifying Nano Drug Delivery 

Systems. The results reveal the model's ability to learn and generalize from the provided data, as evidenced by the high 

accuracy on the test set and the learning curves during training. The visual predictions further validate the model's 

practical capabilities while guiding future improvements. This study sets a solid foundation for applying deep learning 

models in nanomedicine, with potential implications for enhancing precision in NDDS characterization. 

 

4. Discussion 

The pursuit of integrating automation with artificial intelligence (AI) allows for the optimization of targeted therapeutic 

nanoparticles to specific cell types and individuals [19]. Computer algorithms and computational models capable of 

predicting the physico-chemical properties of nanosystems can significantly expedite the development of nanoparticle 

systems [20]. Convolutional neural networks (CNNs) have become extremely popular in research, especially in the 

domain of computer vision, where they are frequently employed for tasks like facial recognition, image classification, 

weather forecasting, and object detection [21]. MobileNet is a type of convolutional neural network (CNN) that boasts a 

high recognition rate and requires fewer calculations and parameters, making it an ideal choice for use on embedded 

devices [22]. In the field of image recognition, MobileNet presently is achieving successful outcomes [23]. The 

intersection of Machine learning (ML) and computer vision continues to be a prolific area of recent research [24]. 

Computer vision analyzes data from images using machine learning [25]. The study by Cern et al. has successfully 

applied Quantitative Structure-Property Relationship (QSPR) models for designing liposomal drugs. This method 

demonstrated impressive external validation accuracy, with results showing 81.8% accuracy using k-nearest Neighbors 

(KNN) and 92.3% using Iterative Stochastic Elimination (ISE), underscoring the reliability and effectiveness of these 

models in predicting drug encapsulation and release behaviors [26]. To the best of our knowledge, this research marks 

the first exploration of utilizing MobileNet tools to classify liposomes as innovative drug delivery systems. Given the 

absence of prior studies in this specific application, this pioneering work opens new avenues for research and potential 

improvements in the efficacy of drug delivery methodologies. 

 

5. Conclusion 

In conclusion, we have succeeded in combining nanotechnology and pharmaceutical sciences with artificial intelligence 

to prepare a trained model to recognize the liposomes as Novel Drug Delivery System (NDDS) and to evaluate the 

nature and concentration of active ingredients carried inside them by utilizing a MobileNet model, which is well-known 

for its effectiveness and precision in image-based classification tasks. The evaluation of the model on the test set, which 

was excluded from the training process, yielded an 84.37% accuracy rate and a loss of 0.5543. In the future, we hope 

that this study will continue and the trained model will develop to determine which organ or disease the drug will target. 

Acknowledgements The authors thank the analysis laboratory in the medical annex for providing assistance in 

completing this work  

Author contribution All authors contributed to the study conception and design. Material preparation, data collection, 

and analysis were performed by, IB, and AMN and SD supervised the experiments. The first draft of the manuscript 

was written by IB, and all authors commented on previous versions of the manuscript. All authors read and approved 

the final manuscript. 

Funding Nil 

Data availability the datasets generated during and/or analyzed during the current study are available from the 

corresponding author on reasonable request. 

Declarations 

Ethics approval and consent to participate All institutional and national guidelines for the care and use of laboratory 

animals were followed. The 



WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE  
Samir Derouiche 

E-ISSN: 2224-2902 8 Volume 22, 2025 

 
 

 

Consent for publication All authors give consent for publication. Competing interests the authors declare no 

competing interests. 

 

References 

Sara Chetehouna, Samir Derouiche, Islam Boulaares, et al, Phytochemical profile, anti-inflammatory analysis and 

cytotoxic activity of SmE-SeNPs against breast (MCF-7) cancer cells, Biocatalysis and Agricultural Biotechnology, 

2024, vol. 57  p. 103122. doi.org/10.1016/j.bcab.2024.103122. 

Sara Chetehouna, Islam Boulaares, Ouidad Atoussi, et al, Green nanoparticles as a Novel application of nanotechnology 

in medicine: study of zinc, copper and magnesium nanoparticles, Records of Pharmaceutical and Biomedical 

Sciences, 2024, vol. 8  p. 109-120. doi.org/10.21608/RPBS.2024.281650.1288. 

Boulaares I, Derouiche S, Chetehouna S, Niemann J. Ocimum basilicum L. leaves extract-mediated green synthesis of 

MnO NPs: Phytochemical profile, characterization, catalytic and thrombolytic activities. Results in Surfaces and 

Interfaces 2024; 17: 100284.6  

Gopal V Shavi, Praful B Deshpande, Usha Y Nayak, et al, Applications of nanotechnology in health care: perspectives 

and opportunities, International Journal of Green Nanotechnology: Biomedicine, 2010, vol. 2  p. B67-B81. 

doi.org/10.1080/1943085x.2010.532072. 

Jayanta Kumar Patra, Gitishree Das, Leonardo Fernandes Fraceto, et al, Nano based drug delivery systems: recent 

developments and future prospects, Journal of nanobiotechnology, 2018, vol. 16  p. 1-33. doi.org/10.1186/s12951-

018-0392-8. 

Syed AA Rizvi, Ayman M Saleh, Applications of nanoparticle systems in drug delivery technology, Saudi 

pharmaceutical journal, 2018, vol. 26  p. 64-70. doi.org/10.1016/j.jsps.2017.10.012. 

Mohit Kumar, Uttam Kumar Mandal, Syed Mahmood, Novel drug delivery system, Advanced and Modern Approaches 

for Drug Delivery, Elsevier, 2023, pp. 1-32. 

Shivakalyani Adepu, Seeram Ramakrishna, Controlled drug delivery systems: current status and future directions, 

Molecules, 2021, vol. 26  p. 5905. doi.org/10.3390/molecules26195905. 

R. R. Thenge, M. P. Chandak, V. S. Adhao, Liposomes: A Novel Drug Delivery System, International Journal of 

Pharmacy and Pharmaceutical Research, 2020, vol. 18  p. 704-715.  

Peng Liu, Guiliang Chen, Jingchen Zhang, A review of liposomes as a drug delivery system: current status of approved 

products, regulatory environments, and future perspectives, Molecules, 2022, vol. 27  p. 1372. 

doi.org/10.3390/molecules27041372. 

Anayatollah Salimi, Liposomes as a novel drug delivery system: fundamental and pharmaceutical application, Asian 

Journal of Pharmaceutics, 2018, vol. 12  p. S31.  

Chetehouna S, Abid AN, Derouiche S, Application of Mobile Net Model to Assess the Phytoniosomes Loaded Sonchus 

Maritimus for Hepatocytes Targeting, Power system technology, 2025, Vol 49 n 2, 2587-2603. 

K S Vidhya, Ayesha Sultana, Naveen Kumar, et al, Artificial intelligence's impact on drug discovery and development 

from bench to bedside, Cureus, 2023, vol. 15  p. e47486. doi.org/10.7759/cureus.47486. 

Samir Derouiche, Imane Yousra Guemari, Islam Boulaares, Characterization and acute toxicity evaluation of the MgO 

Nanoparticles Synthesized from Aqueous Leaf Extract of Ocimum basilicum L, Algerian Journal of Biosciences, 

2020, vol. 1  p. 1-6. doi.org/10.5281/zenodo.4041021. 

Islam Boulaares, Samir Derouiche, Janetta Niemann, HPLC-Q-TOF-MS analysis of phenolic compounds, in vitro 

biological activities and in vivo acute toxicity evaluation of Ocimum basilicum L., Fresenius Environmental 

Bulletin, 2024, vol. 33  p. 73-82.  

Islam  Boulaares, Samir Derouiche, Sara Chetehouna, et al, Ocimum basilicum L. leaves extract-mediated green 

synthesis of MnO NPs: Phytochemical profile, characterization, catalytic and thrombolytic activities, Results in 

Surfaces and Interfaces, 2024, vol. 17  p. 100284. doi.org/10.1016/j.rsurfi.2024.100284. 

Veera Venkata Satya Naga Lakshmi Andra, SVN Pammi, Lakshmi Venkata Krishna Priya Bhatraju, et al, A 

comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents, 

Bionanoscience, 2022, vol. 12  p. 274-291. doi.org/10.1007/s12668-022-00941-x. 

Didem Ag Seleci, Muharrem Seleci, Frank Stahl, et al, Tumor homing and penetrating peptide-conjugated niosomes as 

multi-drug carriers for tumor-targeted drug delivery, RSC advances, 2017, vol. 7  p. 33378-33384. 

doi.org/10.1039/c7ra05071b. 

Egor Egorov, Calvin Pieters, Hila Korach-Rechtman, et al, Robotics, microfluidics, nanotechnology and AI in the 

synthesis and evaluation of liposomes and polymeric drug delivery systems, Drug Delivery and Translational 

Research, 2021, vol. 11  p. 345-352. doi.org/10.1007/s13346-021-00929-2. 

Valentina Di Francesco, Daniela P Boso, Thomas L Moore, et al, Machine learning instructed microfluidic synthesis of 

curcumin-loaded liposomes, Biomedical Microdevices, 2023, vol. 25  p. 29. doi.org/10.1007/s10544-023-00671-1. 

Safa Bouguezzi, Hana Ben Fredj, Tarek Belabed, et al, An efficient FPGA-based convolutional neural network for 

classification: Ad-MobileNet, Electronics, 2021, vol. 10  p. 2272. doi.org/10.3390/electronics10182272. 

Jiawen Liao, Liangwei Cai, Yuan Xu, et al, Design of accelerator for MobileNet convolutional neural network based on 

FPGA, 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference 

(IAEAC), IEEE, 2019, pp. 1392-1396. 

Fu Zhu, Chang Liu, Jianwei Yang, et al, An Improved MobileNet network with wavelet energy and global average 

pooling for rotating machinery fault diagnosis, Sensors, 2022, vol. 22  p. 4427. doi.org/10.3390/s22124427. 



WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE  
Samir Derouiche 

E-ISSN: 2224-2902 9 Volume 22, 2025 

 
 

 

Asharul Islam Khan, Salim Al-Habsi, Machine learning in computer vision, Procedia Computer Science, 2020, vol. 167  

p. 1444-1451. doi.org/10.1016/j.procs.2020.03.355. 

Supriya V Mahadevkar, Bharti Khemani, Shruti Patil, et al, A review on machine learning styles in computer vision—

techniques and future directions, Ieee Access, 2022, vol. 10  p. 107293-107329. 

doi.org/10.1109/ACCESS.2022.3209825. 

Ahuva Cern, Yechezkel Barenholz, Alexander Tropsha, et al, Computer-aided design of liposomal drugs: in silico 

prediction and experimental validation of drug candidates for liposomal remote loading, Journal of controlled 

release, 2014, vol. 173  p. 125-131. doi.org/10.1016/j.jconrel.2013.10.029. 

 

 


